Synthesis and characterisation of transition-metal complexes involving cyclic diselencether ligands

Douglas G. Booth, William Levason, Jeffrey J. Quirk, Gillian Reid and Stephen M. Smith

Department of Chemistry, University of Southampton, Highfield, Southampton, UK SO17 1BJ

Treatment of NCSe(CH₂)₃SeCN with *o*-C₆H₄(CH₂Br)₂ in Na-NH₃-tetrahydrofuran yielded L² (3H-1.4,5.7tetrahydro-2,6-benzodiselenonine) in greater than 80% yield. This cyclic diselenoether has been fully characterised spectroscopically and structurally. Reaction of $[Cu(MeCN)_4]Y(Y = BF_4 \text{ or } PF_6)$ or AgBF₄ with 2 molar equivalents of L^1 (1,5-diselenacyclooctane) or L^2 afforded the mononuclear species $[M(L)_2]Y$ (M = Cu, Y = BF₄ or PF₆; M = Ag, $Y = BF_4$). These compounds have been characterised by IR and ¹H NMR spectroscopy, mass spectrometry and microanalysis. Crystal structure determinations on $[Cu(L^2)_2]BF_4$, $[Ag(L^1)_2]BF_4$ and $[Ag(L^2)_2]BF_4$ confirmed the discrete molecular nature of these products, giving distorted tetrahedral cations in each case. These structures are compared to the structures of related species involving acyclic bidentate thio-, seleno- and telluro-tetraselenacyclohexadecane) has also been determined. Compounds L¹ and L² reacted with 2 molar equivalents of [AuCl(tht)] (tht = tetrahydrothiophene) to yield $[(AuCl)_2L^1]$ or $[(AuCl)_2L^2]$ respectively as white solids. These neutral compounds are thought to involve linear Se-Au-Cl fragments. Compound L² reacted with 1 molar equivalent of MCl₂ (M = Pd or Pt) in refluxing MeCN to give cis-[MCl₂(L²)]. Unusual low-frequency coordination shifts [δ (free ligand) – δ (complex)] were revealed by ⁷⁷Se-{¹H} NMR spectroscopy in each case. This is in contrast to *cis*-[MCl₂(L¹)] which display high-frequency co-ordination shifts. The ¹⁹⁵Pt NMR spectroscopic data on cis-[PtCl₂(L²)] are consistent with an Se₂Cl₂ donor set at Pt^{II}. The crystal structure of cis-[PdCl₂(L²)] shows a distorted square-planar arrangement, with d(Pd-Se) slightly longer than in *cis*-[PdCl₂(L¹)].

As part of a study of Group 16 donor ligand chemistry, we have recently reported the co-ordination chemistry of a series of bidentate ligands, $RE(CH_2)_{\mu}ER$ and $o-C_6H_4(ER)_2$ (E = S or Se; n = 1, 2 or 3; E = Te; n = 1 or 3, with the Group 11 metals.¹⁻⁴ The combination of variable-temperature ¹H, ⁷⁷Se-{¹H}, ¹²⁵Te-{¹H} and ¹⁰⁹Ag NMR spectroscopies and X-ray crystallography has shown that subtle ligand variations can have a dramatic influence upon the structures of the compounds produced, generating simple mononuclear bis(chelate) species, e.g. [Ag- ${MeSe(CH_2)_2SeMe}_2]^+$, linear chain polymers, e.g. $[Ag_n]^ {\rm MeS(CH_2)_3SMe}_n]^{n+}$ involving a new binding mode for MeS(CH₂)₃SMe, and extended three-dimensional networks, e.g. $[Ag_n{PhSe(CH_2)_3SePh}_{2n}]^{n+}$, and, in the case of the methylenebridged ligands, highly unusual 'zeolite-like' structures involving large channels which host PF_6^- or BF_4^- anions, e.g. $[Cu_n^-]$ $(\mbox{MeSeCH}_2\mbox{SeMe})_{2n}]^{n+}.$ In tandem with this, we have also been investigating the co-ordination chemistry of cyclic selenoethers, including [16]aneSe4 (1,5,9,13-tetraselenacyclohexadecane) and [8]aneSe₂ (L¹, 1,5-diselenacyclooctane), and have reported the preparation and characterisation of a number of complexes of these ligands with the platinum-group metals, including for example trans- $[PtX_2([16]aneSe_4)]^{2+}$ ($\hat{X} = Cl$ or Br), the first examples of platinum(IV) species involving an Se₄X₂ donor set.⁵⁻¹⁰ More recently we have also begun to investigate the chemistry of these ligands with hard chromium(III) centres.¹¹ Pinto and co-workers¹² have reported the structure of the threedimensional copper(1) polymeric species $[Cu_n([16]aneSe_4)_n]^{n+}$,¹² in which one Se donor atom from four different [16]aneSe₄ molecules is ligated to Cu^I, affording a pseudo-tetrahedral arrangement at each metal centre within the network, Cu-Se 2.42-2.52 Å. The copper(II) species [Cu([16]aneSe₄)][CF₃SO₃]₂ has also been reported, the structure of which shows squareplanar Se4 co-ordination, with two weakly interacting axial CF₃SO₃⁻ anions, Cu–Se 2.4593(6), 2.4554(6), Cu · · · O 2.464(5) Å.¹³ In view of the wide range of structural motifs observed for compounds of Cu^I and Ag^I involving bidentate acyclic selenoethers and the polymeric structure reported for [Cun(16]-

aneSe₄)_{*n*}]^{*n*+}, we have undertaken a study on complexes of the cyclic diselenoethers L¹ and L² (3*H*-1,4,5,7-tetrahydro-2,6-benzodiselenonine) with Cu^I, Ag^I and Au^I. There have been very few reported examples of cyclic diselenoether complexes with transition-metal ions, examples include [M(CO)₄L] (M = Cr, Mo or W; L = 1,4-diselenacyclohexane),¹⁴ [Ru(η⁶-C₆H₆)-L(EtCN)]²⁺ (L = 2,11-diselena[3.3]orthocyclophane)],¹⁵ *cis*-[Pd-Cl₂(L¹)],⁹ *trans*-[RhCl₂(L¹)₂]⁺⁸ and *cis*-[RuCl₂(L¹)₂].¹⁰ Kumagai and Akabori ¹⁶ have reported a preparation for L² previously, together with mercury(II) complexes of it, however little spectroscopic data on these species were presented. These are the only complexes of L² of which we are aware. Compound L² also allows us to determine the effects on the co-ordination chemistry of varying the interdonor linkages in these cyclic systems.

We report here an improved synthesis and full spectroscopic and X-ray structural characterisation of L^2 , together with the preparation and spectroscopic characterisation of $[M(L^1)_2]Y$ $(M = Cu, Y = PF_6; M = Ag, Y = BF_4), [M(L^2)_2]BF_4, [Ag([16]$ $aneSe_4)]BF_4, [(AuCl)_2(L^1)] and [(AuCl)_2(L^2)]. The preparations$ of*cis* $-[M'Cl_2(L^2)] (M' = Pd or Pt) are also included, together$ $with single-crystal structure determinations on <math>[Ag(L^1)_2]BF_4$, $[Ag(L^2)_2]BF_4, [Cu(L^2)_2]BF_4$ and *cis*-[PdCl_2(L^2)].

Results and Discussion

The compound NCSe(CH₂)₃SeCN was added to a solution of Na in tetrahydrofuran (thf)–liquid NH₃, generating NaSe-(CH₂)₃SeNa *in situ*. Dropwise addition of α, α' -dibromo-*o*-

Table 1 Selected bond lengths (Å) and angles (°) for compound L²

Se(1)-C(1)	1.95(1)	Se(1)-C(11)	1.980(10)
Se(2) - C(3)	1.952(9)	Se(2)-C(4)	1.97(1)
Se(3)-C(12)	1.957(9)	Se(3)-C(22)	1.985(10)
Se(4)-C(14)	1.96(1)	Se(4)-C(15)	1.96(1)
C(1) - C(2)	1.51(1)	C(2) - C(3)	1.52(1)
C(4) - C(5)	1.51(1)	C(5) - C(6)	1.40(1)
C(5) - C(10)	1.42(1)	C(6) - C(7)	1.38(1)
C(7) - C(8)	1.38(1)	C(8) - C(9)	1.37(1)
C(9)-C(10)	1.40(1)	C(10)-C(11)	1.49(1)
C(12)-C(13)	1.52(1)	C(13)-C(14)	1.52(1)
C(15)-C(16)	1.50(1)	C(16)-C(17)	1.39(1)
C(16)-C(21)	1.41(1)	C(17)-C(18)	1.37(1)
C(18)-C(19)	1.39(1)	C(19)-C(20)	1.37(1)
C(20)-C(21)	1.39(1)	C(21)-C(22)	1.49(1)
C(1)-Se(1)-C(11)	100.8(4)	C(3)-Se(2)-C(4)	102.6(4)
C(12)-Se(3)-C(22)	101.5(4)	C(14)-Se(4)-C(15)	101.9(4)
Se(1)-C(1)-C(2)	114.5(7)	C(1)-C(2)-C(3)	115.2(9)
Se(2)-C(3)-C(2)	114.9(7)	Se(2)-C(4)-C(5)	113.9(7)
C(4)-C(5)-C(6)	117.9(9)	C(4)-C(5)-C(10)	123.3(10)
C(6)-C(5)-C(10)	118.8(9)	C(5)-C(6)-C(7)	121.1(9)
C(6)-C(7)-C(8)	120(1)	C(7)-C(8)-C(9)	119.7(10)
C(8)-C(9)-C(10)	122.1(9)	C(5)-C(10)-C(9)	118.0(9)
C(5)-C(10)-C(11)	122.0(9)	C(9)-C(10)-C(11)	119.9(9)
Se(1)-C(11)-C(10)	115.0(6)	Se(3)-C(12)-C(13)	114.1(7)
C(12)-C(13)-C(14)	114.6(8)	Se(4)-C(14)-C(13)	114.2(7)
Se(4)-C(15)-C(16)	115.7(6)	C(15)-C(16)-C(17)	118.2(9)
C(15)-C(16)-C(21)	122.5(9)	C(17)-C(16)-C(21)	119.3(9)
C(16)-C(17)-C(18)	122.1(9)	C(17)-C(18)-C(19)	119.4(9)
C(18)-C(19)-C(20)	118.5(10)	C(19)-C(20)-C(21)	123.9(10)
C(16)-C(21)-C(20)	116.6(9)	C(16)-C(21)-C(22)	123.9(9)
C(20)-C(21)-C(22)	119.5(8)	Se(3)-C(22)-C(21)	111.9(6)

Fig. 1 View of the structure of one of the independent molecules of compound L^2 in the asymmetric unit with the numbering scheme adopted (the other molecule is essentially indistinguishable). Ellipsoids are shown at 40% probability

xylene gave L² which was isolated in greater than 80% yield following purification by column chromatography [δ (⁷⁷Se) +296]. Electron impact (EI) mass spectrum: found m/z = 306, calculated m/z = 306]. Surprisingly, a ⁷⁷Se-{¹H} NMR spectrum of the crude reaction mixture following evaporation of the NH₃ revealed only trace amounts of other Se-containing species. This contrasts with the reaction of NCSe(CH₂)₃SeCN and Br(CH₂)₃Br with Na in thf–liquid NH₃, which gives L¹ (17%), [16]aneSe₄ (40%), [24]aneSe₆ (15%) (1,5,9,13,17,21-hexaselenacyclotetracosane) and higher polymers, and suggests that the α , α '-dibromo- α -xylene sets up the correct geometry for ring

Fig. 2 View of the structure of $[{\rm Cu}(L^2)_2]^+$ with the numbering scheme adopted. Ellipsoids as in Fig. 1

closure *via* a [1 + 1] cyclisation process. The crystal structure of the product from this reaction confirms (Fig. 1, Table 1) the formation of the [1 + 1] cyclisation product, L^2 , with the Se atom lone pairs pointing out of the ring, presumably to minimise the repulsion. The angles around the Se atoms are in the range $100.8(4)-102.6(4)^{\circ}$.

Reaction of $[Cu(MeCN)_4]Y$ (Y = BF₄ or PF₆) with 2 molar equivalents of L $(L = L^1 \text{ or } L^2)$ in degassed acetone at room temperature for 12 h gave colourless solutions. Addition of diethyl ether afforded [Cu(L)₂]Y as cream or white solids. Electrospray mass spectra showed peaks with the correct isotopic pattern at m/z = 549 and 673 respectively for L¹ and L², corresponding to [Cu(L)₂]⁺. Infrared spectroscopy was not very informative, revealing only the presence of L and either BF_4^- or PF_{6}^{-} counter ion as appropriate. Significantly however, there was no evidence for co-ordinated MeCN in the IR spectra. The formulations [Cu(L)2]Y were confirmed by ¹H NMR spectroscopy and microanalytical measurements and a single crystal structure of $[Cu(L^2)_2]BF_4$. The structure shows (Fig. 2, Table 2) a discrete copper(1) monomer, with two chelating L² ligands generating a distorted tetrahedral stereochemistry, Cu-Se 2.409(5), 2.403(6), 2.405(5) and 2.436(6) Å. These distances compare well with d(Cu-Se) observed in other copper(I) selenoether complexes, e.g. $[Cu_n([16]aneSe_4)_n]^{n+}$ Cu–Se 2.42–2.52 Å,¹² [Cu{o-C₆H₄(SeMe)₂}₂]⁺ Cu-Se 2.379(2), 2.419(2) Å.³ The Se-Cu-Se angles lie in the range 98.6(2)-122.39(7)°, with those involved in the chelate rings at the lower end of this range. The six-membered chelate rings in the $[Cu(L^2)_2]^+$ cation both adopt a boat arrangement.

The corresponding silver(I) complexes $[Ag(L)_2]BF_4$ were obtained by reaction of $AgBF_4$ with 2 molar equivalents of L in degassed acetone. These reactions were conducted in foil-wrapped vessels due to the sensitivity of the compounds to light. Electrospray mass spectra on the products showed m/z = 593 and 717, corresponding to $[Ag(L^1)_2]^+$ and $[Ag(L^2)_2]^+$ respectively. To enable a comparison with the copper(I) species above, and with the silver(I) complexes involving acyclic bidentate thio-, seleno- and telluro-ether ligands,¹⁻⁴ single-crystal structure determinations were undertaken on $[Ag(L^1)_2]BF_4$ and $[Ag(L^2)_2]BF_4$. The structure of the former shows (Fig. 3, Table 3) a distorted tetrahedral silver(I) monomer with two bidentate L¹ ligands, Ag–Se 2.636(4), 2.668(4), 2.639(4) and 2.695(4) Å. The Se–Ag–Se angles involved in the six-membered chelate rings are Se(1)–Ag–Se(2) 90.0(1) and Se(3)–Ag–Se(4)

Table 2 Selected bond lengths (Å) and angles (°) for $[Cu(L^2)_2]^+$

Se(1)–Cu	2.409(5)	Se(1)-C(1)	1.96(2)	C(5)-C(10)	1.53(2)	C(6) - C(7)	1.40(3)
Se(1)–C(11)	1.93(2)	Se(2)–Cu	2.403(6)	C(7)–C(8)	1.24(2)	C(8) - C(9)	1.45(3)
Se(2)-C(3)	1.95(2)	Se(2)-C(4)	1.95(2)	C(9) - C(10)	1.39(3)	C(10)-C(11)	1.53(3)
Se(3)–Cu	2.405(5)	Se(3)-C(12)	2.00(2)	C(12)-C(13)	1.33(2)	C(13)-C(14)	1.54(2)
Se(3)-C(22)	2.02(2)	Se(4)–Cu	2.436(6)	C(15)-C(16)	1.54(2)	C(16)-C(17)	1.50(2)
Se(4)-C(14)	1.97(2)	Se(4)-C(15)	2.01(2)	C(16) - C(21)	1.30(2)	C(17) - C(18)	1.40(2)
C(1) - C(2)	1.72(2)	C(2) - C(3)	1.60(3)	C(18) - C(19)	1.55(2)	C(19) - C(20)	1.34(2)
C(4) - C(5)	1.49(2)	C(5)-C(6)	1.30(3)	C(20)-C(21)	1.40(2)	C(21)-C(22)	1.49(3)
Cu-Se(1)-C(1)	104.0(5)	Cu-Se(1)-C(11)	102.1(6)	C(6)-C(5)-C(10)	119(1)	C(5)-C(6)-C(7)	121(1)
C(1)-Se(1)-C(11)	100.9(8)	Cu-Se(2)-C(3)	106.7(6)	C(6)-C(7)-C(8)	126(1)	C(7) - C(8) - C(9)	116(1)
Cu-Se(2)-C(4)	103.7(6)	C(3)-Se(2)-C(4)	93.8(8)	C(8)-C(9)-C(10)	123(1)	C(5)-C(10)-C(9)	113(1)
Cu-Se(3)-C(12)	102.6(5)	Cu-Se(3)-C(22)	100.1(5)	C(5)-C(10)-C(11)	124(1)	C(9)-C(10)-C(11)	121(1)
C(12)-Se(3)-C(22)	96.6(7)	Cu-Se(4)-C(14)	100.3(5)	Se(1)-C(11)-C(10)	112(1)	Se(3)-C(12)-C(13)	119(1)
Cu(1)-Se(4)-C(15)	102.8(5)	C(14)-Se(4)-C(15)	106.1(7)	C(12)-C(13)-C(14)	116(1)	Se(4)-C(14)-C(13)	120(1)
Se(1)-Cu-Se(2)	99.1(2)	Se(1)-Cu-Se(3)	122.39(7)	Se(4)-C(15)-C(16)	113(1)	C(15)-C(16)-C(17)	109(1)
Se(1)-Cu-Se(4)	108.5(2)	Se(2)-Cu-Se(3)	109.6(2)	C(15)-C(16)-C(21)	132(1)	C(17)-C(16)-C(21)	117(1)
Se(2)-Cu-Se(4)	120.28(7)	Se(3)-Cu-Se(4)	98.6(2)	C(16)-C(17)-C(18)	122(1)	C(17)-C(18)-C(19)	112(1)
Se(1)-C(1)-C(2)	113(1)	C(1)-C(2)-C(3)	115(1)	C(18)-C(19)-C(20)	121(1)	C(19)-C(20)-C(21)	120(1)
Se(2)-C(3)-C(2)	109(1)	Se(2)-C(4)-C(5)	117(1)	C(16)-C(21)-C(20)	124(1)	C(16)-C(21)-C(22)	118(1)
C(4)-C(5)-C(6)	126(1)	C(4)-C(5)-C(10)	113(1)	C(20)-C(21)-C(22)	117(1)	Se(3)-C(22)-C(21)	111(1)

Fig. 3 View of the structure of $[Ag(L^1)_2]^+$ with the numbering scheme adopted. Ellipsoids as in Fig. 1

 $89.30(9)^\circ\!,$ while the other Se–Ag–Se angles lie in the range 113.9(1)-128.5(2)°. The L¹ ligands adopt a boat-boat conformation. This is in contrast to the chair-boat conformation observed in the solid state for *cis*-[PdCl₂(L¹)].⁹ The only other silver(I) complex of an acyclic diselenoether incorporating a trimethylene backbone is $[Ag_n{PhSe(CH_2)_3SePh}_{2n}]^{n+}$, and the polymeric structure of this cation is clearly very different from the discrete molecular structure observed for $[Ag(L^1)_2]^+$. The structure of $[Ag(L^2)_2]^+$ shows (Fig. 4, Table 4) a very similar arrangement to that in the copper(1) analogue above, with two chelating L² ligands co-ordinated tetrahedrally to Ag^I, Ag-Se 2.658(1) and 2.679(2) Å. The Ag-Se bond lengths observed in these cyclic diselencether complexes are longer than d(Cu-Se)in $[Cu(L^2)_2]^+$ above, in accord with the increased radius of Ag^I over Cu^I. Similar Ag–Se distances have been observed in other silver(I)-selenoether species, *e.g.* $[AgL_2]^+$ (L = 1,3,5-triselena-cyclohexane) Ag–Se 2.78(1)–3.05(1) Å¹⁷ and $[Ag\{MeSe(CH_2)_2-$ SeMe}2]⁺ Ag-Se 2.626(2), 2.638(1), 2.634(2) and 2.610(1) Å.⁵

We have also isolated a silver(1) complex incorporating the tetraselena crown [16]aneSe₄. Reaction of $AgBF_4$ with 1 molar equivalent of [16]aneSe₄ in degassed acetone for 1 h at room temperature yielded a colourless solution. Concentrating this

Table 3 Selected bond lengths (Å) and angles (°) for $[Ag(L^1)_2]^+$

Ag-Se(1)	2.636(4)	Ag–Se(2)	2.668(4)
Ag–Se(3)	2.639(4)	Ag–Se(4)	2.695(4)
Se(1)-C(1)	2.04(3)	Se(1)-C(6)	1.86(4)
Se(2)-C(3)	2.06(3)	Se(2)-C(4)	1.85(3)
Se(3)-C(7)	1.93(3)	Se(3)-C(12)	1.98(3)
Se(4)-C(9)	1.95(3)	Se(4)-C(10)	2.02(3)
C(1)–C(2)	1.48(4)	C(2) - C(3)	1.51(5)
C(4)–C(5)	1.58(4)	C(5) - C(6)	1.47(5)
C(7)–C(8)	1.50(4)	C(8)-C(9)	1.50(4)
C(10)-C(11)	1.51(4)	C(11)-C(12)	1.41(4)
Se(1)-Ag-Se(2)	90.0(1)	Se(1)-Ag-Se(3)	128.5(2)
Se(1)-Ag-Se(4)	113.9(1)	Se(2)-Ag-Se(3)	114.5(1)
Se(2)-Ag-Se(4)	124.6(2)	Se(3)-Ag-Se(4)	89.30(9)
Ag-Se(1)-C(1)	99.2(8)	Ag-Se(1)-C(6)	101(1)
C(1)-Se(1)-C(6)	103(1)	Ag-Se(2)-C(3)	97.7(10)
Ag-Se(2)-C(4)	101(1)	C(3)-Se(2)-C(4)	100(1)
Ag-Se(3)-C(7)	102.3(8)	Ag-Se(3)-C(12)	100.2(10)
C(7)–Se(3)–C(12)	103(1)	Ag-Se(4)-C(9)	100(1)
Ag-Se(4)-C(10)	97.3(9)	C(9)-Se(4)-C(10)	100(1)
Se(1)-C(1)-C(2)	117(2)	C(1)-C(2)-C(3)	114(2)
Se(2)-C(3)-C(2)	117(2)	Se(2)-C(4)-C(5)	117(2)
C(4)-C(5)-C(6)	118(2)	Se(1)-C(6)-C(5)	118(2)
Se(3)-C(7)-C(8)	116(1)	C(7)-C(8)-C(9)	114(2)
Se(4)-C(9)-C(8)	117(2)	Se(4)-C(10)-C(11)	119(2)
C(10)-C(11)-C(12)	123(2)	Se(3)-C(12)-C(11)	117(2)

solution and addition of diethyl ether afforded a white solid. The IR spectrum showed peaks due to BF_4^- anion and coordinated [16]aneSe₄, while the electrospray mass spectrum (MeCN solution) showed peaks with the correct isotopic pattern at m/z = 593 and 549, corresponding to $[Ag([16]-aneSe_4)]^+$ and $[Ag([16]aneSe_4 - C_3H_6)]^+$ respectively (Fig. 5). The IR spectroscopic and microanalytical data are also consistent with the formulation $[Ag([16]aneSe_4)]BF_4$. Given the polymeric structure reported for the copper(i) analogue, $[Cu([16]-aneSe_4)]^+$, 12 and the very poor solubility shown by this silver(i) species in organic solvents, it seems likely that this may also adopt a polymeric arrangement in the solid state.

Gold complexes involving thio-, seleno- and telluro-ether ligands have been limited mainly to examples involving macrocyclic thioethers, *e.g.* $[Au([9]aneS_3)_2]^{+/2+/3+}$ ([9]aneS_3 = 1,4,7trithiacyclononane),¹⁸ [AuCl([9]aneS_3)]¹⁹ and [Au₂([15]aneS_5)_2]²⁺ ([15]aneS_5 = 1,4,7,10,13-pentathiacyclopentadecane),²⁰ and a few examples involving mono- and bi-dentate thioethers, such as [AuX(SR₂)], [AuX(tht)] (tht = tetrahydrothiophene)²¹ and [(AuCl)₂{ μ -RS(CH₂)_nSR}] (R = Me, Et or Ph; *n* = 2 or 3).²² The only well characterised examples of gold–selenoether complexes are [AuCl(Ph₂Se)] and [AuCl₃(Ph₂Se)] prepared by

Table 4 Selected bond lengths (A) and angles ($^{\circ}$) for $[Ag(L^2)_2]^{\circ}$						
Ag–Se(1)	2.658(1)	Ag–Se(1)	2.658(1)			
Ag–Se(2)	2.679(2)	Ag–Se(2)	2.679(2)			
Se(1)-C(1)	1.90(1)	Se(1)-C(11)	2.03(1)			
Se(2)-C(3)	1.91(1)	Se(2)-C(4)	2.03(1)			
C(2)–C(3)	1.56(2)	C(1)–C(2)	1.53(2)			
C(5)-C(6)	1.39(2)	C(4) - C(5)	1.50(2)			
C(6)–C(7)	1.36(2)	C(5)-C(10)	1.39(2)			
C(8)-C(9)	1.41(2)	C(7)–C(8)	1.36(2)			
C(10)-C(11)	1.47(2)	C(9)-C(10)	1.41(2)			
$\mathbf{C}_{\mathbf{r}}(1) = \mathbf{A}_{\mathbf{r}\mathbf{r}} = \mathbf{C}_{\mathbf{r}}(1)$	100.00(0)	$C_{-}(1) \wedge \rightarrow C_{-}(0)$	00.00(5)			
Se(1)-Ag- $Se(1)$	133.03(8)	Se(1) - Ag - Se(2)	93.20(5)			
Se(1)-Ag- $Se(2)$	111.20(4)	Se(1)-Ag-Se(2)	111.26(4)			
Se(1)-Ag-Se(2)	93.20(5)	Se(2)-Ag-Se(2)	116.66(8)			
Ag-Se(1)-C(1)	103.1(4)	Ag-Se(1)-C(11)	101.1(3)			
C(1)-Se(1)-C(11)	101.6(6)	Ag-Se(2)-C(3)	100.7(4)			
Ag-Se(2)-C(4)	97.9(4)	C(3)-Se(2)-C(4)	101.4(6)			
Se(1)-C(1)-C(2)	115.4(9)	C(1)-C(2)-C(3)	116(1)			
Se(2)-C(3)-C(2)	118.5(9)	Se(2)-C(4)-C(5)	112.1(9)			
C(4)-C(5)-C(6)	118(1)	C(4)-C(5)-C(10)	122(1)			
C(6)-C(5)-C(10)	119(1)	C(5)-C(6)-C(7)	122(1)			
C(6)-C(7)-C(8)	119(1)	C(7)-C(8)-C(9)	119(1)			
C(8)-C(9)-C(10)	120(1)	C(5)-C(10)-C(9)	117(1)			
C(5)-C(10)-C(11)	123(1)	C(9)-C(10)-C(11)	118(1)			
Se(1)-C(11)-C(10)	112.3(9)					

Fig. 4 View of the structure of $[Ag(L^2)_2]^+$ with the numbering scheme adopted. Atoms marked * are related by a crystallographic two-fold operation. Ellipsoids as in Fig. 1

direct reaction of Ph₂Se with AuCl or Au₂Cl₆ respectively. Crystallographic studies on these species show that the Au^I–Se bond length is 0.07 Å shorter than the Au^{III}–Se bond length. consistent with the gold(I)-selenoether interaction being substantially stronger.23 Treatment of [AuCl(tht)] with 0.5 molar equivalent of L ($L = L^1$ or L^2) in degassed acetone affords [(AuCl)₂(L)] as white solids. The IR spectra of these species show peaks due to co-ordinated L, and a terminal Au-Cl stretching vibration at 330 and 328 cm⁻¹ for L¹ and L² respectively. Proton NMR spectroscopy and microanalyses are consistent with the formulation [(AuCl)₂(L)] for the products. Unfortunately, despite repeated attempts, we have been unable to obtain crystals suitable for a single-crystal structure determination. However, analogy with the neutral 1:2 ligand: Au complexes, $[(AuCl)_2 \{\mu - RS(CH_2)_n SR\}]$ (R = Me, Et or Ph; n = 2 or 3),²² would suggest linear co-ordination of an AuCl fragment to each Se donor of L^1 and L^2 in these compounds.

Fig. 5 Observed (a) and calculated (b) electrospray mass spectrum of $[Ag([16]aneSe_4)]^+$

Fig. 6 View of the structure of cis-[PdCl₂(L²)] with the numbering scheme adopted. Ellipsoids as in Fig. 1

We have previously reported the preparation and spectroscopic characterisation of the complexes cis-[MCl₂(L¹)] (M = Pd or Pt), together with the crystal structure of *cis*- $[PdCl_2(L^1)]$, which gave d(Pd-Cl) = 2.363(2) and 2.348(2) and d(Pd-Se) = 2.3647(8) and 2.3693(8) Å.⁹ Compound L¹ adopts a chair-boat conformation in this complex. Reaction of MCl, (M = Pd or Pt) with 1 molar equivalent of L^2 in refluxing MeCN affords the neutral species $[MCl_2(L^2)]$ as orange (Pd) or yellow (Pt) solids. These compounds are very poorly soluble {less so than $[MCl_2(L^1)]$ } in most organic solvents, and only sparingly soluble in dimethyl sulfoxide (dmso). The IR spectrum of $[PtCl_2(L^2)]$ shows peaks at 317 and 305 cm⁻¹, indicative of a terminal *cis*-PtCl₂ unit. For [PdCl₂(L²)] a broad peak is observed at 314 cm⁻¹, and it seems likely that the two v(Pd–Cl) stretching vibrations expected for a *cis*-PdCl₂ unit are overlapping in this case. Attempts to obtain FAB or electrospray mass spectra for these materials proved unsuccessful, probably due to their very low solubilities. This was also evident in our attempts to obtain NMR spectra, and hence long accumulation times were required. The 77Se-{1H} NMR spectra were obtained for both compounds in dmso solution, and showed singlets at δ +249 and +244 for Pd and Pt respectively. The resonance for the platinum species was broad (W_2 ca. 400 Hz) and hence the ¹⁹⁵Pt satellites were not resolved. In contrast to many other d-block complexes with selenoether ligands which typically show high-frequency co-ordination shifts,24 these compounds show shifts to low frequency upon co-ordination to Pd^{II} or Pt^{II} [free L²: δ (⁷⁷Se) +296]. For example, [MCl₂(L¹)] show shifts to high frequency of +62 and +57 ppm for M = Pd and Pt respectively, relative to free L¹ [δ (⁷⁷Se) +137]. The ¹⁹⁵Pt NMR spectrum of cis-[PtCl₂(L²)] shows a single resonance at δ -3672, consistent with an Se_2Cl_2 donor set at Pt^{II} . This is a similar shift to that of cis-[PtCl₂(L¹)] which gave δ (¹⁹⁵Pt) -3825, and

Table 5 Selected bond lengths (Å) and angles (°) for cis-[PdCl₂(L²)]

Pd–Se(1)	2.381(2)	Pd–Se(2)	2.380(2)
Pd-Cl(1)	2.348(4)	Pd–Cl(2)	2.343(4)
Se(1)-C(1)	1.98(2)	Se(1)–C(11)	1.97(2)
Se(2)-C(3)	1.94(2)	Se(2)-C(4)	1.98(2)
C(1) - C(2)	1.50(2)	C(2) - C(3)	1.50(2)
C(4) - C(5)	1.49(2)	C(5)–C(6)	1.40(2)
C(5)-C(10)	1.41(2)	C(6)–C(7)	1.37(2)
C(7)-C(8)	1.39(2)	C(8)-C(9)	1.37(2)
C(9) - C(10)	1.40(2)	C(10)-C(11)	1.51(2)
Se(1)-Pd-Se(2)	94.34(7)	Se(1)–Pd–Cl(1)	87.1(1)
Se(1)-Pd-Cl(2)	178.4(1)	Se(2)-Pd-Cl(1)	177.9(1)
Se(2)-Pd-Cl(2)	85.9(1)	Cl(1)-Pd-Cl(2)	92.8(1)
Pd-Se(1)-C(1)	106.5(4)	Pd-Se(1)-C(11)	105.0(4)
C(1)-Se(1)-C(11)	100.5(7)	Pd-Se(2)-C(3)	106.3(4)
Pd-Se(2)-C(4)	106.4(4)	C(3)-Se(2)-C(4)	101.5(7)
Se(1)-C(1)-C(2)	118(1)	C(1)-C(2)-C(3)	117(1)
Se(2)-C(3)-C(2)	120(1)	Se(2)-C(4)-C(5)	110(1)
C(4) - C(5) - C(6)	119(1)	C(4)-C(5)-C(10)	121(1)
C(6)-C(5)-C(10)	119(1)	C(5)-C(6)-C(7)	119(1)
C(6)-C(7)-C(8)	122(1)	C(7)-C(8)-C(9)	117(1)
C(8)-C(9)-C(10)	122(1)	C(5)-C(10)-C(9)	118(1)
C(5)-C(10)-C(11)	121(1)	C(9)-C(10)-C(11)	120(1)
Se(1)-C(11)-C(10)	111(1)		.,

significantly to high frequency of the homoleptic tetraselena species $[Pt(L^1)_2]^{2_+}$ which gave $\delta(^{195}Pt)$ $-4606.^9$

In order to ascertain that these are discrete molecular species, and to confirm the M–Se ligation, we undertook a single-crystal structure determination on *cis*-[PdCl₂(L²)]. Single crystals were obtained from a solution of the compound in dmso. The crystal structure does indeed confirm that this is a mononuclear species, and shows (Fig. 6, Table 5) the expected *cis*-dichloro arrangement, with one chelating L² ligand completing the distorted square-planar geometry, Pd–Cl 2.348(4) and 2.343(4), Pd–Se 2.381(2) and 2.380(2) Å. In this species the six-membered chelate ring is in a chair conformation, and the Se(1)–Pd–Se(2) angle is 94.34(7)°. While the Pd–Cl distances are very similar, the Pd–Se bond lengths are slightly longer than in *cis*-[PdCl₂-(L¹)], possibly due to the increased steric effect of the *o*-xylyl linkage.

These results show that L^1 and L^2 are effective ligands for a variety of metal centres, and comparisons with our previous work on complexes of Cu^I and Ag^I of acyclic bidentate selenoethers further support the conclusion that subtle variations in the framework of bidentate selenoethers, particularly interdonor linkage, substituent and cyclic *vs.* acyclic arrangement, dramatically influence the structures adopted in the solid state.

Experimental

Infrared spectra were measured as KBr of CsI discs or as Nujol mulls using a Perkin-Elmer 983G spectrometer over the range 200-4000 cm⁻¹, mass spectra by fast-atom bombardment (FAB) using 3-nitrobenzyl alcohol as matrix on a VG Analytical 70-250-SE normal geometry double-focusing mass spectrometer or by positive electrospray (ES) using a VG Biotech Platform and UV/VIS spectra in solution using 1 cm path length quartz cells using a Perkin-Elmer Lambda 19 UV/visible spectrophotometer. Proton NMR spectra were recorded using a Bruker AM300 spectrometer operating at 300 MHz, ⁷⁷Se-{¹H} and ¹⁹⁵Pt NMR spectra using a Bruker AM360 spectrometer operating at 68.68 and 77.8 MHz respectively and referenced to neat Me₂Se [δ (⁷⁷Se) 0] or aqueous $[PtCl_6]^{2-}$ [δ (¹⁹⁵Pt) 0]. Spectra were recorded using 10 mm outside diameter tubes containing ca. 10% deuteriated solvent. Microanalyses were performed by the Imperial College microanalytical service. The compounds [Cu(MeCN)4]Y $(Y = BF_4 \text{ or } PF_6)$ ²⁵ [AuCl(tht)]²¹ and L¹ (ref. 26) were prepared by the literature methods.

Syntheses

L². To a stirred solution of 1,3-bis(selenocyanato)propane (4 g, 16 mmol) in liquid ammonia (600 cm³) and anhydrous thf (200 cm³) was added Na metal (1.5 g, 64 mmol) in small pieces under nitrogen until a colourless, homogeneous solution was obtained. At this point, a solution of α, α' -dibromo-o-xylene (4.2 g, 16 mmol) in anhydrous thf (100 cm³) was added dropwise over 6 h. The ammonia was allowed to evaporate overnight, and the reaction mixture diluted with water (100 cm³) before concentrating to ca. 150 cm³ in vacuo. The aqueous phase was extracted with dichloromethane $(3 \times 200 \text{ cm}^3)$ and the combined organic extracts washed with water (100 cm³), dried over MgSO₄, and concentrated in vacuo to yield a light yellow crystalline solid. Purification by silica gel chromatography [hexane-ethyl acetate (20:1)] afforded L² as colourless crystals (4.07 g, 83%). EI mass spectrum: found m/z = 306, 202; calculated for L m/z = 306, $[L^2 - o - C_6H_4(CH_2)_2]$ 202. ¹H NMR (300 MHz, CDCl₃): δ 7.1–7.3 (m, $o - C_6H_4$, 4 H), 3.8 [s, $o - C_6H_4$, 4 H), 3. C₆H₄(CH₂Se)₂, 4 H], 2.65 (m, SeCH₂CH₂, 4 H) and 2.0 (m, CH₂CH₂CH₂, 2 H). ¹³C-{¹H} NMR (75.5 MHz, CDCl₃): δ 139.0, 130.2, 127.6 (o-C₆H₄, each 2C), 34.1 (CH₂CH₂CH₂, 1C), 25.2 (Se CH_2 , 2C, ${}^{1}J_{SeC} = 62$) and 24.0 (Se CH_2 , 2C, ${}^{1}J_{SeC} = 68$ Hz). ⁷⁷Se-{¹H} NMR (68.68 MHz, CDCl₃): δ 296. IR (KBr disc): 3065w, 3050w, 3035w, 2961w, 2923w, 2885w, 2827w, 1483s, 1446s, 1411s, 1340m, 1280s, 1259m, 1219m, 1189m, 1113m, 1099m, 1072m, 1039m, 946w, 869w, 860m, 820m, 803m, 760s, 746s, 614s, 606s, 593m, 580m, 446w and 394w cm^{-1} .

[Cu(L¹)₂]PF₆. The compound [Cu(MeCN)₄]PF₆ (77 mg, 0.21 mmol) was added to L¹ (100 mg, 0.41 mmol) in Me₂CO (10 cm³) under N₂. The reaction mixture was stirred at room temperature for 1.5 h, giving a colourless solution. Addition of deoxygenated diethyl ether (100 cm³) afforded a white precipitate which was filtered off, recrystallised from Me₂CO and dried *in vacuo*. Yield = 74 mg, 52% (Found: C, 20.8; H, 3.3. Calc. for C₁₂H₂₄CuF₆PSe₄: C, 20.7; H, 3.5%). Electrospray mass spectrum (MeCN): found *m*/*z* = 549; calculated for [Cu(L¹)₂]⁺ *m*/*z* = 551 (⁶³Cu, ⁸⁰Se). ¹H NMR [(CD₃)₂CO, 300 K]: δ 3.1–3.3 (SeCH₂, 4 H) and 2.3 (CH₂CH₂CH₂, 2 H). IR (Nujol): 1295w, 1250w, 1222w, 1152w, 1050w, 1001w, 960w, 876w, 838s and 556s cm⁻¹.

[Cu(L²)₂]BF₄. The compound L² (50 mg, 0.16 mmol) was stirred in a solution of [Cu(MeCN)₄]BF₄ (26 mg, 0.08 mmol) in deoxygenated acetone (10 cm³, 273 K) under an atmosphere of N₂ for 2 h. The solvent volume was reduced to *ca.* 1 cm³ *in vacuo* and deoxygenated diethyl ether was added (30 cm³). The resulting cream solid was filtered off, recrystallised from CH₂Cl₂ and dried *in vacuo.* Yield = 37 mg, 60% (Found: C, 31.0; H, 2.5. Calc. for C₂₂H₂₈BCuF₄Se₄·2CH₂Cl₂: C, 31.0; H, 3.0%). Electrospray mass spectrum: found *m*/*z* = 673; calculated for [Cu(L²)₂]⁺ *m*/*z* = 675 (⁶³Cu, ⁸⁰Se). ¹H NMR spectrum (CD₃CN, 300 K): δ 7.1–7.3 (*α*-C₆H₄, 4 H), 4.2 [*α*-C₆H₄(CH₂Se), 4 H], 2.6 (SeCH₂CH₂, 4 H) and 2.1 (CH₂CH₂CH₂, 2 H). IR (CsI disc): 3046w, 2923w, 2957w, 2977w, 1482w, 1445m, 1404m, 1395m, 1370w, 1339w, 1280w, 1256m, 1219w, 1189s, 860w, 824m, 774m and 609m cm⁻¹.

[Ag(L¹)₂]BF₄. The compound AgBF₄ (32 mg, 0.16 mmol) in Me₂CO (5 cm³) was added to L¹ (78 mg, 32 mmol) in CH₂Cl₂ solution (10 cm³) under N₂. Stirring for 1 h in a foil-wrapped flask gave a colourless solution, to which deoxygenated diethyl ether (100 cm³) was added, giving a white precipitate. The solid was filtered off, recrystallised from MeCN and dried *in vacuo*. Yield = 61 mg, 56% (Found: C, 20.7; H, 2.7. Calc. for C₁₂-H₂₄AgBF₄Se₄·CH₂Cl₂: C, 20.4; H, 3.1%). Electrospray mass spectrum (MeCN): found *m*/*z* = 593; calculated for [Ag(L¹)₂]⁺ *m*/*z* = 595 (¹⁰⁷Ag, ⁸⁰Se). ¹H NMR (CD₃CN, 300 K): δ 3.1–3.3

(SeCH₂, 4 H) and 2.5 (CH₂CH₂CH₂, 2 H). IR (Nujol): 1292w, 1222w, 1050s, 879w and 519m cm⁻¹.

 $[Ag(L^2)_2]BF_4$. The compound L^2 (50 mg, 0.16 mmol) was stirred in a solution of AgBF₄ (31 mg, 0.08 mmol) in deoxygenated Me₂CO (10 cm³, foil-wrapped flask) under an atmosphere of N₂ for 2 h. The solution was reduced to ca. 1 cm³ and deoxygenated diethyl ether was added (30 cm³). The resulting white solid was filtered off, recrystallised from CH2Cl2 and dried in vacuo. Yield = 34 mg, 60% (Found: C, 31.1; H, 2.8. Calc. for C22H28AgBF4Se4·CH2Cl2: C, 31.1; H, 3.4%). Electrospray mass spectrum: found m/z = 412, 717; calculated for $[Ag(L^2)]^+$ m/z = 413, $[Ag(L^2)_2]^+$ m/z = 719 (¹⁰⁷Ag, ⁸⁰Se). ¹H NMR (CD₃CN, 300 K): δ 7.2-7.3 (o-C₆H₄, 4 H), 4.2 [o-C₆H₄(CH₂Se), 4 H], 2.8 (SeCH₂CH₂, 4 H) and 2.1 (CH₂CH₂CH₂, 2 H). IR (CsI disc): 3051w, 2932w, 2877w, 1704w, 1629w, 1487m, 1444m, 1424m, 1406m, 1381w, 1344w, 1283m, 1256m, 1222w, 1182w, 1164w, 1086 (br), 1049 (br), 885w, 861w, 836w, 825w, 808w, 774w, 608m, 598 (sh), 542w, 521w and 447w cm⁻¹.

[(AuCl)₂L¹]. The compound L¹ (50 mg, 0.26 mmol) was added to a solution of [AuCl(tht)] (133 mg, 0.41 mmol) in degassed MeCN (20 cm³) in the dark (*i.e.* in a foil-wrapped flask) at 0 °C for 1 h. During this time a white precipitate formed, which was filtered off, washed with degassed MeCN and dried *in vacuo*. Yield = 56 mg, 30% (Found: C, 10.4; H, 2.0. Calc. for C₆H₁₂Au₂Cl₂Se₂: C, 10.2; H, 1.7%). ¹H NMR (CD₃CN, 300 K): δ 2.9–2.6 (SeCH₂, 4 H) and 1.7 (CH₂-CH₂CH₂, 2 H). IR (CsI disc): 3051w, 2956w, 2921w, 1426m, 1412m, 1360m, 1286w, 1217m, 1123m, 987w, 931w, 806w, 617m and 330w cm⁻¹.

[(AuCl)₂L²]. The compound L² (50 mg, 0.16 mmol) was stirred in a solution of [AuCl(tht)] (105 mg, 0.33 mmol) in deoxygenated Me₂CO (10 cm³, foil-wrapped apparatus) under an atmosphere of N₂ at 0 °C for 1 h during which time a white precipitate formed. Special care was taken not to expose the reaction mixture to light. The required solid was filtered off and washed with degassed Me₂CO (1 cm³ × 2) and dried *in vacuo*. Yield = 41 mg, 31% (Found: C, 17.0; H, 1.9. Calc. for C₁₁H₁₄Au₂Cl₂Se₂: C, 17.2; H, 1.8%). ¹H NMR [(CD₃)₂CO, 300 K]: δ 7.4–7.7 (*o*-C₆H₄, 4 H), 4.3 [*o*-C₆H₄(CH₂Se)₂, 4 H], 3.1 (SeCH₂CH₂) and 2.1 (CH₂CH₂CH₂, 2 H). IR (CsI disc): 3010w, 2961w, 2928w, 1486w, 1448w, 1406w, 1356w, 1221m, 1114s, 769m, 613w and 328w cm⁻¹.

[Ag([16]aneSe₄)]BF₄. The compound AgBF₄ (36 mg, 0.18 mmol) in Me₂CO (5 cm³) was added to [16]aneSe₄ (85 mg, 18 mmol) in CH₂Cl₂ solution (10 cm³) under N₂. Stirring for 1 h in a foil-wrapped flask gave a colourless solution, to which deoxygenated diethyl ether (100 cm³) was added, giving a white precipitate. The solid was filtered off, washed with diethyl ether and dried *in vacuo*. Yield = 81 mg, 66% (Found: C, 20.9; H, 3.3. Calc. for C₁₂H₂₄AgBF₄Se₄: C, 21.1; H, 3.5%). Electrospray mass spectrum (MeCN): found *m*/*z* = 595, 549; calculated for [¹⁰⁷Ag([16]ane⁸⁰Se₄)]⁺ *m*/*z* = 593, [¹⁰⁷Ag([16]ane⁸⁰Se₄ - C₃H₆)]⁺ *m*/*z* = 553. IR (Nujol): 1289w, 1222w, 1203w, 1045s and 519m cm⁻¹.

cis-[PdCl₂(L²)]. The compound PdCl₂ (29 mg, 0.16 mmol) was added to a solution of L² (50 mg, 0.16 mmol) in degassed MeCN solution (20 cm³). Refluxing this mixture for 10 h afforded an orange precipitate. After concentrating the solution, the solid was filtered off, washed with diethyl ether and dried *in vacuo*. Yield = 63 mg, 80% (Found: C, 27.0; H, 3.2. Calc. for C₁₁H₁₄Cl₂PdSe₂: C, 27.4; H, 2.9%). ¹H NMR [(CD₃)₂SO, 300 K]: δ 7.3–7.5 (*o*-C₆H₄, 4 H), 4.4 [*o*-C₆H₄-(CH₂Se)₂, 4 H], 2.6 (SeCH₂CH₂, 4 H) and 2.1 (CH₂CH₂CH₂, 2 H). ⁷⁷Se-{¹H} NMR [68.68 MHz, Me₂SO–(CD₃)₂SO, 300 K]: δ +249. IR (Nujol mull): v(Pd–Cl) 314 (br) cm⁻¹.

595, 549; calculated for $[Ag([16]ane^{80}Se_4 - C_3H_6)]^+$ [Ag(L¹)₂]BF₄. Single crystals of this c

cis-[PtCl₂(L²)]. Method as for *cis*-[PdCl₂(L²)] above, but using PtCl₂ (43 mg, 0.16 mmol) and L² (50 mg, 0.16 mmol), giving a yellow solid. Yield = 65 mg, 72% (Found: C, 23.5; H, 2.6. Calc. for C₁₁H₁₄Cl₂PtSe₂: C, 23.1; H, 2.5%). ¹H NMR spectrum [(CD₃)₂SO, 300 K]: δ 7.3–7.5 (*o*-C₆H₄, 4 H), 4.4 [*o*-C₆-H₄(CH₂Se)₂, 4 H], 3.6 (SeCH₂CH₂, 4 H) and 2.1 (CH₂CH₂CH₂, 2 H). ⁷⁷Se-{¹H} NMR [68.68 MHz, Me₂SO-(CD₃)₂SO, 300 K]: δ +244. ¹⁹⁵Pt NMR [77.8 MHz, (CD₃)₂SO, 300 K]: δ -3672. IR (Nujol mull): v(Pt-Cl) 317m and 305w cm⁻¹.

X-Ray crystallography

For each compound the selected crystal was coated with mineral oil, mounted on a glass fibre using silicone grease as adhesive, and immediately placed in a stream of cold nitrogen gas. Data collection used a Rigaku AFC7S four-circle diffractometer equipped with an Oxford Systems Cryostream low-temperature attachment, with graphite-monochromated Mo-K α X-radiation ($\lambda_{max} = 0.710$ 73 Å), T = 150 K, $\omega - 2\theta$ scans. The intensities of three standard reflections were monitored every 150. No significant crystal decay or movement was observed {except for [Ag([8]aneSe₂)₂]BF₄, see below}. As there were no identifiable faces the raw data were corrected for absorption using ψ scans {except for *cis*-[PdCl₂(L²)], see below}. The weighting scheme $w^{-1} = \sigma^2(F)$ gave satisfactory agreement analyses in each case and all refinements were based on *F*. Crystallographic data are presented in Table 6.

L². Single crystals of compound L² were obtained from a solution in CHCl₃. The structure was solved by direct methods using SHELXS 86²⁷ and expanded using iterative cycles of full-matrix least squares and Fourier-difference syntheses which located all of the remaining non-H atoms for two independent molecules in the asymmetric unit.²⁸ All non-H atoms were refined anisotropically and H atoms were included in fixed, calculated positions with d(C-H) = 0.95 Å.

 $[Cu(L^2)_2]BF_4$. Crystals suitable for single-crystal X-ray analysis were obtained by vapour diffusion of diethyl ether into a solution of the complex in MeCN. Analysis of the systematic absences indicated the space group to be either C2/c or Cc. The structure was initially solved in C^2/c since the intensity statistics suggested a centric space group. Structure solution used heavyatom methods,²⁹ and all other non-H atoms were then located by iterative cycles of full-matrix least-squares refinements and Fourier-difference syntheses.²⁸ This gave one half cation in the asymmetric unit, but the BF_4^- anion appeared to be very badly disordered and would not refine. The space group was then changed to Cc, and this gave a complete cation and an ordered BF₄⁻ anion in the asymmetric unit. The Cu, Se and F atoms were refined anisotropically (the low data: parameters ratio meant that the C and B atoms were refined isotropically). The choice of enantiomorph was confirmed by refining the Flack parameter.30 Hydrogen atoms were included in fixed, calculated positions with d(C-H) = 0.95 Å.

[Ag(L¹)₂]BF₄. Single crystals of this compound were obtained by vapour diffusion of Et₂O into a solution in CH₂Cl₂. During data collection the intensities of the standard reflections decreased by 6.5%, hence a linear decay correction was applied to the raw data to account for this. The data set was rather weak probably reflecting rather poor crystal quality. The systematic absences indicated the space group to be either $P4_1$ or $P4_3$. The structure was solved in the former using heavy-atom methods²⁹ and developed by using iterative cycles of full-matrix leastsquares refinements and Fourier-difference syntheses.²⁸ This gave one complete [Ag(L¹)₂]⁺ cation and a BF₄⁻ anion in the asymmetric unit. The choice of space group was confirmed by refining the Flack parameter.³⁰ Some disorder was identified in the BF₄⁻ anion. This was modelled quite successfully by using two fully occupied F atoms [F(1) and F(3)] and four 50% occupied

Table 6 Crystallographic data

	L ²	$[Ag(L^1)_2BF_4]$	$[Cu(L^2)_2]BF_4$	$[Ag(L^2)_2]BF_4$	cis-[PdCl ₂ (L ²)]
Formula	C11H14Se2	C12H24AgBF4Se4	C22H28BCuF4Se4	C22H28AgBF4Se4	C11H14Cl2PdSe2
Μ	304.15	678.83	758.65	802.97	481.46
Colour, morphology	Colourless, column	Colourless, column	Colourless, column	Colourless, block	Yellow, block
Crystal dimensions/mm	0.70 imes 0.10 imes 0.08	0.30 imes 0.15 imes 0.10	0.60 imes 0.45 imes 0.20	0.60 imes 0.55 imes 0.40	0.25 imes 0.25 imes 0.25
Crystal system	Monoclinic	Tetragonal	Monoclinic	Orthorhombic	Monoclinic
Space group	$P2_1/c$	$P4_1$	Сс	Fdd2	$P2_1/c$
aĺÅ	5.304(5)	10.198(3)	15.341(7)	15.92(1)	12.584(5)
b/Å	15.472(8)	10.198	11.844(5)	26.087(5)	7.895(6)
c/Å	26.600(8)	18.618(3)	14.953(7)	11.985(6)	13.666(4)
β/°	90.66(8)	_	114.56(4)	_	98.70(3)
$U/Å^3$	2182(2)	1936(1)	2471(2)	4977(4)	1342(1)
Ζ	8	4	4	8	4
<i>F</i> (000)	1184	1280	1464	3072	912
$D_{\rm c}/{\rm g~cm^{-3}}$	1.851	2.329	2.039	2.143	2.383
$\mu(Mo-K\alpha)/cm^{-1}$	66.60	85.86	68.17	66.99	71.10
Transmission factors (maximum, minimum)	1.000, 0.555	1.000, 0.480	1.000, 0.619	1.000, 0.299	1.000, 0.469
No. unique observed reflections	4011	1971	2300	1226	2555
$R_{\rm int}$ (based on F^2)	0.064	_	0.085	_	0.089
Unique observed reflections with $[I_0 > n\sigma(I_0)]$	1929 (<i>n</i> = 2.5)	1126 (<i>n</i> = 2)	1683 (<i>n</i> = 2.5)	1072 (n = 2.5)	1295 (<i>n</i> = 2.5)
No. parameters	235	132	173	144	90
Goodness of fit	1.32	1.51	2.99	1.71	1.85
$R(F_{o})$	0.038	0.052	0.047	0.042	0.050
$R'(F_{o})$	0.041	0.057	0.058	0.055	0.059
Maximum, minimum residual peaks/e ${\rm \AA}^{-3}$	0.62, -0.59	1.51, -1.27	1.43, -1.54	1.60, -1.93	0.96, -1.24

 $R = \sum (|F_{o}|_{i} - |F_{c}|_{i}) / \sum |F_{o}|_{i}, R' = [\sum w_{i}(|F_{o}|_{i} - |F_{c}|_{i})^{2} / \sum w_{i}|F_{o}|_{i}^{2}]_{2}^{1}, \text{ goodness of fit} = [\sum (|F_{o}|_{i} - |F_{c}|_{i}) / \sigma_{i}] / (n - m) \approx 1.$

F atoms. Atoms F(1) and F(3) also showed slightly higher than expected thermal parameters, but attempts to split their occupancies were not successful. The Ag, Se and fully occupied F atoms were refined anisotropically. The other non-H atoms were refined isotropically due to the limited data:parameter ratio resulting from the weak data set. Hydrogen atoms were included in fixed, calculated positions with d(C-H) = 0.95 Å.

[Ag(L²)₂]BF₄. Crystals suitable for single-crystal X-ray analysis were obtained by vapour diffusion of diethyl ether into a solution of the complex in MeCN. The structure was solved by heavy-atom methods,²⁹ which revealed the Ag atom occupying a crystallographic two-fold site. The other non-H atoms of one half-cation and a half BF_4^- anion (with the B atom occupying a crystallographic two-fold site) were then located by iterative cycles of full-matrix least-squares refinements and Fourierdifference syntheses.²⁸ The BF_4^- anion showed some disorder which was satisfactorily modelled by using partial F atom occupancies, such that the B atom had four 50% occupied F atoms around it (related to another four by the two-fold operation). The Cu, Se, C and B atoms were refined anisotropically, while the partially occupied F atoms were refined isotropically. Hydrogen atoms were included in fixed, calculated positions with d(C-H) = 0.95 Å.

cis-[PdCl₂(L²)]. Suitable crystals were obtained from a solution of the complex in dimethyl sulfoxide. The structure was solved by direct methods using SHELXS 86²⁷ and developed by iterative cycles of full-matrix least-squares refinement and Fourier-difference syntheses which located all non-H atoms in the asymmetric unit.²⁸ At isotropic convergence an empirical absorption correction was applied to the raw data using DIFABS³¹ since the initial ψ -scans did not give a satisfactory correction. The Pd, Cl and Se atoms were refined anisotropically and H atoms were included in fixed, calculated positions with d(C-H) = 0.95 Å.

CCDC reference number 186/637.

Acknowledgements

We thank the Leverhulme Trust (S. M. S.) and the EPSRC

(J. J. Q. and D. G. B.) for support, and the latter for provision of the diffractometer. We also thank Johnson-Matthey plc for generous loans of KAuCl₄, PdCl₂ and PtCl₂.

References

- 1 J. R. Black, N. R. Champness, W. Levason and G. Reid, J. Chem. Soc., Chem. Commun., 1995, 1277.
- 2 J. R. Black, N. R. Champness, W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 1995, 3439.
- 3 J. R. Black, N. R. Champness, W. Levason and G. Reid, Inorg. Chem., 1996, 35, 1820.
- 4 J. R. Black, N. R. Champness, W. Levason and G. Reid, Inorg. Chem., 1996, 35, 4432.
- 5 P. F. Kelly, W. Levason, G. Reid and D. J. Williams, J. Chem. Soc., Chem. Commun., 1993, 1716.
- 6 N. R. Champness, P. F. Kelly, W. Levason, G. Reid, A. M. Z. Slawin and D. J. Williams, Inorg. Chem., 1995, 34, 651
- 7 C. S. Frampton, W. Levason, J. J. Quirk and G. Reid, Inorg. Chem., 1994, 33, 3120.
- 8 W. Levason, J. J. Quirk and G. Reid, J. Chem. Soc., Dalton Trans., 1996, 3713.
- 9 N. R. Champness, J. J. Quirk, W. Levason, G. Reid and C. S. Frampton, Polyhedron, 1995, 14, 2753.
- 10 W. Levason, J. J. Quirk, G. Reid and S. M. Smith, J. Chem. Soc., Dalton Trans., 1997, in the press.
- 11 W. Levason, G. Reid and S. M. Smith, Polyhedron, 1997, in the press. 12 R. J. Batchelor, F. W. B. Einstein, I. D. Gay, J.-H. Gu and
- B. M. Pinto, J. Organomet. Chem., 1991, 411, 147. 13 R. J. Batchelor, F. W. B. Einstein, I. D. Gay, J.-H. Gu, B. M. Pinto and X.-M. Zhou, J. Am. Chem. Soc., 1990, 112, 3706.
- 14 G. Hunter and R. C. Massey, J. Chem. Soc., Dalton Trans., 1974, 1873
- 15 L. R. Hanton and T. Kemmitt, Inorg. Chem., 1993, 32, 363.
- 16 T. Kumagai and S. Akabori, *Chem. Lett.*, 1989, 1667. 17 H. Hofmann, P. G. Jones, M. Noltemeyer, E. Peymann, W. Pinkert, H. W. Roesky and G. M. Sheldrick, J. Organomet. Chem., 1983, 241, 97.
- 18 A. J. Blake, R. O. Gould, J. A. Greig, A. J. Holder, T. I. Hyde and M. Schröder, J. Chem. Soc., Chem. Commun., 1989, 876; A. J. Blake, J. A. Greig, A. J. Holder, T. I. Hyde, A. Taylor and M. Schröder, Angew. Chem., Int. Ed. Engl., 1990, 29, 197; A. J. Blake, R. O. Gould, C. Radek, G. Reid, A. Taylor and M. Schröder, The Chemistry of the Copper and Zinc Triads, eds. A. J. Welch and S. K. Chapman, The Royal Society of Chemistry, London, 1993, p. 95.

- 19 D. Parker, P. S. Roy, G. Ferguson and M. E. Hunt, Inorg. Chim. Acta, 1989, 155, 227.
- 20 A. J. Blake, A. Taylor and M. Schröder, J. Chem. Soc., Chem. Commun., 1993, 1097.
- 21 R. Uson, A. Laguna and M. Laguna, *Inorg. Synth.*, 1989, 26, 85.
- 22 K. C. Dash and H. Schmidbaur, Z. Naturforsch., Teil B, 1992, 47, 1261; M. G. B. Drew and M. J. Riedl, J. Chem. Soc., Dalton Trans., 1973, 52.
- 23 P. G. Jones and C. Thoene, Z. Naturforsch., Teil B, 1991, 46, 50.
- 24 E. G. Hope and W. Levason, Coord. Chem. Rev., 1993, 122, 109.
- 25 G. Kubas, *Inorg. Synth.*, 1979, **19**, 90.
 26 R. J. Batchelor, F. W. B. Einstein, I. D. Gay, J.-H. Gu, B. D. Johnston and B. M. Pinto, J. Am. Chem. Soc., 1989, 111, 6582.
- 27 SHELXS 86, program for crystal structure solution, G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
- 28 TEXSAN Crystal Structure Analysis Package, Molecular Structure
- 20 TEXSALV CLYSTAL SHUTTLY ANALYSIS FACKAGE, WORCHAR SHUTTLY COPPORTION, The Woodlands, TX, 1995.
 29 PATTY, The DIRDIF Program System, P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, Technical Report of the Component of t the Crystallography Laboratory, University of Nijmegen, 1992. 30 H. D. Flack, *Acta Crystallogr., Sect. A*, 1983, **39**, 876.
- 31 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.

Received 27th May 1997; Paper 7/03636A